If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-19x-39=0
a = 1; b = -19; c = -39;
Δ = b2-4ac
Δ = -192-4·1·(-39)
Δ = 517
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{517}}{2*1}=\frac{19-\sqrt{517}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{517}}{2*1}=\frac{19+\sqrt{517}}{2} $
| 12+15x=-18 | | r+92=984 | | 6m+7=43m= | | 17-2y=2y-15 | | c/25=9 | | 10-5y=29 | | 36^-3x+3=1/216^x+1 | | 5f-25=-35 | | h-38=169 | | 3e-9=-18 | | c+34=5c+22 | | -8x-3x=5-6x | | 15+4.50h=12.50+5h | | x^2-1,6x-1,6^2=0 | | 6+3x/2x=2x/6 | | 6y+8=6(y+2)-4 | | -7+4x-7x=-22 | | 2x+9-14=2(x+2)-1 | | -2(y+6)=3y+3 | | 2x+(-46)=82 | | 6/3x=2x/25 | | 8=8d | | c+-309=632 | | 13c+27=18c+12 | | 10s-30=-52 | | 100=w+89 | | p+109=919 | | 6(g+3)=-2(g+13) | | 4*(1-x)+9=15 | | 6y+4-3y=-5y+y+17 | | 3x-29+x=23 | | 3+12x=39;x= |